

#### Series 959TA14

**Twin Alternating Metered Water Softening System** 



**Operation and Maintenance Manual** 

#### **Table of Contents**

| System Specifications and Warnings4     |
|-----------------------------------------|
| Introduction 5                          |
| Assembly and Installation Instructions9 |
| Plumbing Diagram13                      |
| General Installation14                  |
| Series 959 Control Valve Programming 15 |
| User Information Displays 19            |
| Volume Calculator 20                    |
| Parts Breakdown                         |
| Front Cover and Drive Assembly25        |
| Main Body Internal Parts 26             |
| Injector Housing Assembly 27            |
| Water Meter 28                          |
| Motorized Alternating Valve (MAV)29     |
| Brine Tank Assembly                     |
| System Specifications                   |
| Troubleshooting                         |
| Water Softener Log 40                   |
| Manufacturer's Warranty 43              |

#### **System Specifications and Warnings**

#### **System Specifications**

Water pressure: 40 psi minimum 100 psi Maximum

Water Temperature: 40°F to 110°F

**Electrical Requirements:** 

Supply Voltage: 120V Supply Frequency: 60Hz Output Voltage: 24V AC

Output Current: Maximum 3.0 Amps

Water Meter:

Pipe Size: 3"
Accuracy: ± 5%

Minimum Flow: 3.5 GPM

Control Valve to Tank Connection: 6" Flange

Control Valve Distributor Pipe Connection: 3"

Circuit Board Memory: NonVolatile EEPROM (Electrical Erasable Programmable Read Only Memory)

Compatible with the following typical concentrations of regenerant chemicals: Sodium Chloride, Potassium Chloride, Potassium Permangenate, Sodium Bisulfite, Chlorine and Chloramines



#### Warnings

The control valve and fittings are not designed to support the weight of the system or the plumbing.

Do not use Vaseline, oils, other hydrocarbon lubricants or spray silicone anywhere. A silicone lubricant may be used on black o-rings.

Hydrocarbons such as kerosene, benzene, gasoline, etc., may damage products that contain o-rings or plastic components. Exposure to such hydrocarbons may cause the products to leak. Do not use the product(s) contained in this document on water supplies that contain hydrocarbons such as kerosene, benzene, gasoline, etc.

The water meter should not be used as the primary monitoring device for critical or health effect applications.

Do not use pipe dope or other sealants on threads. Teflon tape is recommended to be used on all threads. Use of pipe dope may break down the plastics in the control valve.

#### 1. INTRODUCTION

Long term, successful operation of any water softening system depends upon the care and attention it receives. Ordinarily, water treatment systems will provide uniform performance after the initial start-up period and operation is stable. Gallonage delivery between regenerations and treated water purity usually do not vary appreciably over the life of the resins--as long as the mineral content of the incoming water does not change.

This manual is intended to be a practical reference guide for all operating personnel. In view of the fact that system performance can change very dramatically throughout the year, a discussion of "ion exchange" theory is included in addition to basic information relative to equipment operation and regeneration procedures. Thorough understanding of the simple chemical reactions will help to determine if some equipment malfunction has occurred, or if the system is simply responding to changing water conditions. For this reason, all operation and supervising personnel are encouraged to study Section 2, which define terminology and the simple chemistry associated with this system.

lon exchange (i.e., the softening process) is a reversible reaction. Ion exchange softening resins have only a limited capacity for removing calcium and magnesium minerals. If the volume of water put through a resin bed exceeds its capacity, some hardness will start sloughing off into the treated water. Therefore, service runs must be terminated before this breakthrough occurs. When a run is over, the resins are treated with sodium chloride salt to displace the hardness and restore its removal capacity again. This process is termed "regeneration".

The degree of softening that can be accomplished depends upon several factors. The primary influences are the incoming water composition, type of resins used and amount of salt used. Secondary influences are the concentrations and flowrates at which NaCl is applied.

#### 2. PRINCIPLES OF ION EXCHANGE IN THE SOFTENING PROCESS

#### 2.1 ION EXCHANGE SOFTENING PROCESS

In order to understand what happens in the ion exchange softening process, it will first be necessary to understand the meaning of the terms which are used in the explanation. HARD WATER, CATION EXCHANGER, and BRINE are therefore defined below and then used to show how the ion exchange process works.

- A. Hard Water All natural waters contain much the same dissolved impurities, but in widely varying amounts. There are always enough ANIONS (-) present to balance the CATIONS (+), but anions have no effect on the ion exchange softening process. Water will be HARD, if it contains large amounts of Calcium (Ca++) and/or Magnesium (Mg++) ions.
- B. *Brine* water in which SALT has dissolved. SATURATED brine contains as much salt as it is possible to hold in solution (approx. 26% to 27%).
  - SALT SODIUM CHLORIDE (NaCl). When dissolved in water it splits up (ionizes) into Sodium (Na+) ions and Chloride (Cl-).
  - SATURATED BRINE contains a very great number of Na+ and Cl- ions (concentration is over 200,000 ppm). When used to regenerate a CATION EXCHANGER, only the Sodium ions (Na+) are put to use. The Chloride ions (Cl-) do not work in the process.
- C. Cation Exchanger a solid material which has a very large number of "REACTION POINTS". These reaction points have NEGATIVE (-) electric charges, and are able to attract and hold CATIONS, which are POSITIVELY (+) charged (much the same way as the way opposite poles of a magnet attract each other).

- D. The Softening Process When most of the reaction points have been occupied by Ca++ or Mg++ ions, hardness will begin to slip through the bed in increasing amounts. This rise in hardness in the effluent is an indication that the effective capacity of the CATION EXCHANGER has been reached. The CATION EXCHANGER must then be regenerated to restore it to its original condition.
- E. Regeneration A solution of NaCl is applied to the CATION EXCHANGER at a controlled rate and the softening process is reversed. The Ca++ and Mg++ ions are driven off of the CATION EXCHANGER and replaced with Na+ ions. At the end of regeneration, the "spent" brine is rinsed away and the REGENERATED CATION EXCHANGER, with its reaction points again occupied by sodium ions -is again able to soften HARD WATER.

#### 2.2 QUALITY OF EFFLUENT

If the hard water contains less than 500 ppm (about 30 grains) of Calcium, Magnesium and Sodium salts, all expressed as CaCO3, it will be found that the effluent from a softener will contain an average of not more that 2 ppm actual total hardness (Zero hardness by the SOAP TEST). However, as the total CATION concentration in the hard water increases above 500 ppm, the average hardness in the effluent will also increase proportionately.

The reason for this is that when the sodium salt - those present in the raw water plus those formed by the exchange reactions - are present in high enough concentrations, they cause a "back-regeneration" effect at the same time as the softening process is taking place. This effect prevents as complete a removal of calcium and magnesium as would otherwise be possible.

It is often possible to reduce the average hardness in the effluent below normally expected concentrations, by using a greater amount of salt than usual for regeneration.

Normal Softening Cycle - At the start of a normal softening cycle, the hardness in the effluent drops rapidly as the residue of hardness ions left in the bed at the end of the rinse are forced out. The effluent hardness reaches a certain minimum value and remains at approximately this concentration for the major part of the softening run.

#### 2.3 CAPACITY OF ION EXCHANGER

The capacity for the removal of calcium and magnesium depends mainly upon the type of ion exchanger which is used. It is further influenced by the amounts of hardness and sodium ions in the raw water, and by the amount of salt used for regeneration.

- A. Raw Water The effect of the amounts of hardness and sodium ions in the raw water, is expressed in terms of COMPENSATED HARDNESS. The hardness of the raw water is considered to be greater than it actually is for capacity determinations, whenever: (a) the total hardness is greater than 400 ppm (as CaCO3), or (b) the sodium salts are over 100 ppm as (CaCO3). This "greater-than-actual" hardness is referred to as COMPENSATED HARDNESS.
- B. Salt Dosage The capacity which will be obtained from a cation exchanger is also determined by the amount of salt used during regeneration. The Kilograins (kgr) of hardness which can be removed by each cubic foot of ion exchanger between regenerations, increases as more salt is used for regeneration.

At the same time, the efficiency of salt usage decreases with the higher regenerant dosages. That is, a greater number of Kilograins of hardness are removed for each pound of salt used at the lower salt dosages, (and consequently, at the lower capacities). Thus, greater economy may be obtained at the expense of the number of gallons of water softened between regenerations.

#### 3. NORMAL OPERATOR RESPONSIBILITIES

Long term, reliable system performance depends upon how conscientiously the equipment is operated and maintained. Operator responsibilities to assure operation should include the following recommended practices:

#### 3.1 MAINTAIN OPERATING LOGS

Operators should maintain close control of the process by monitoring system performance daily. Effluent purity, hardness leakage, service run lengths and pressure drop across the bed must be recorded faithfully. Since resins are subject to fouling, decrease in product quality or run length could be the result of fouling. In addition to operating data, log notations should include chemical delivery dates, equipment design changes, or modifications in program settings. This information can be invaluable if troubleshooting is ever required.

The daily log should be updated once or twice a shift and should include the following information:

- 1. Date and Time
- 2. Which Softener is Online
- 3. Inlet and Outlet pressure gauge readings; calculated pressure drop
- 4. Influent hardness
- 5. Effluent hardness
- 6. Gallon capacity remaining
- 7. Record salt usage
- 8. Any equipment design changes, or modifications in programmed cycle settings or capacity settings

#### 4. OPERATING & REGENERATION PROCEDURES

#### 4.1 DESCRIPTION OF OPERATION

The system is designed for fully automatic operation. Each unit is equipped with a NHWBP (No Hard Water Bypass) valve that controls the In-Service and Standby modes. Service runs will automatically switch to the stand-by tank when the meter set point has been reached, initiating the regeneration cycle. The stand-by tank then becomes the service tank and the exhausted tank begins a regeneration cycle.

#### 4.2 REGENERATION CYCLE

#### A. SERVICE

During service flow, raw water passes through the inlet of the control valve and downflow through the resin bed, through the lower hub and lateral distribution system, up the distributor pipe and exits through the outlet of the control valve and into the service lines. Service flow continues until the preset gallonage has been used, initiating the regeneration process.

#### B. BACKWASH

Raw water passes through the inlet of the control valve and is directed down through the distributor pipe to the bottom of the tank. Water flow passes through the lower hub and lateral distribution system and travels upflow through the resin bed. The water expands the bed scrubbing the resin beads and washing any entrapped dirt out through the control valve drain port and out to drain. Backwash sequence lasts approximately 10 minutes.

#### C. BRINE AND SLOW RINSE

Raw water is directed through the injector built into the main regeneration control. A venturi action in the injector draws the required amount of brine into the softener. The solution of salt water then passes downflow through the resin bed, through the lower hub and lateral distribution system, up the distributor pipe and exits through the drain port of the control valve and out to drain. The level of water in the brine tank should be drawn down from the preset level. The brine float air check valve shuts off air when the preset drawdown is reached. Raw water continues to the drain through the main control valve slow rinsing the resin for the remainder of the cycle. Brine and slow rinse sequence lasts approximately 60 minutes.

#### D. SECOND BACKWASH

Water flow is the same as the first backwash. This step in the regeneration process helps to remove iron that was released from the resin during the Brine cycle. The second Backwash sequence lasts approximately 6 minutes.

#### E. FAST RINSE

Raw water passes through the inlet of the control valve and downflow through the resin bed, through the lower hub and lateral distribution system, up the distributor pipe and exits through the drain port of the control valve and out to drain. This sequence removes all remaining brine from the resin bed. The Fast Rinse sequence lasts approximately 10 min.

#### F. BRINE REFILL

When the regeneration cycle is finished, fresh water flows through the brine line and into the brine tank refilling it to the preset level. The brine valve float will control water makeup level.

A WORD OF CAUTION -- DON'T ARBITRARILY MAKE CHANGES, IF YOU WISH TO MAINTAIN EFFICIENT REGENERATIONS.

# Assembly and Installation Instructions

#### **Placement of Water Treatment Equipment**

Locating the proper place for your water softener is important. Here are some important considerations before the placement of the system.

- 1. The unit should be located as close to the point of use of the treated water as is possible. Verify that the water pressure does not exceed 100 psi before installing the system. The water pressure of the system should range between 50 psi and 100 psi maximum. Damage may occur to the system and/or control valve if the pressure is allowed to exceed 100 psi and the manufacturer's warranty will be void.
- 2. The system must be provided with an open (gravity) drain of sufficient size to handle the maximum flow rate of waste-water (See System Specifications for the flow rates) without overflowing or splashing. The drain lines must not be smaller than the size of the drain port located on the control valve.
- 3. It is important that a clean power supply, that originates from a fused non-interruptible 120 V AC 60 cycle source, sufficient to operate the controller during normal operating conditions, is provided. *An electrical surge protector or UPS (Uninterruptible Power Source) is recommended.*
- 4. Do not place system in a location where particularly corrosive fumes are present or heavy equipment and/or traffic is present. (However, the system is constructed to handle normal industrial atmospheric and vibrational conditions.)
- 5. The system must be located on a sturdy, level floor. Otherwise a platform must be built that is capable of supporting the complete assembly including the weight of the water in the tanks.
- 6. The system should be installed within twenty feet of a suitable drain that is capable of handling the backwash requirements of the system.
- 7. Some systems are quite large. Entrances to the desired location must be large enough to accommodate the size of the largest component of the system. Also, there must be adequate space for the system before installation. (For measurements of the system check the model spec sheet.)
- 8. The system must be placed in a location where it will not freeze.

#### **Loading the Mineral Tank with Media**

Below is a list of instructions for loading the mineral tank with media:

- 1. Remove the disposable retainer plug in the top of the mineral tank. This retainer plug is used to secure the distributor assembly inside the tank and protect it from damage during shipping and handling.
- 2. Inspect the distributor assembly located at the bottom of the mineral tank before loading the media. Center the distributor in the bottom of the tank.

#### WARNING: DO NOT LOAD THE TANK IF THE DISTRIBUTOR APPEARS TO BE DAMAGED IN ANY WAY!

- 3. Place the mineral tank where you want to install the system.
  - Careful consideration of the proper position of the empty mineral tank is necessary since the system will be difficult to move once it is completely loaded.
- 4. Plug the top opening of the distributor pipe to keep any media from entering the pipe while loading the mineral tank. Fill the tank approximately 1/3 full of water. The water will aid as a cushion to protect the lower distributor assembly from gravel impact.

Note: The enclosed funnel has been added to aid the media installation.

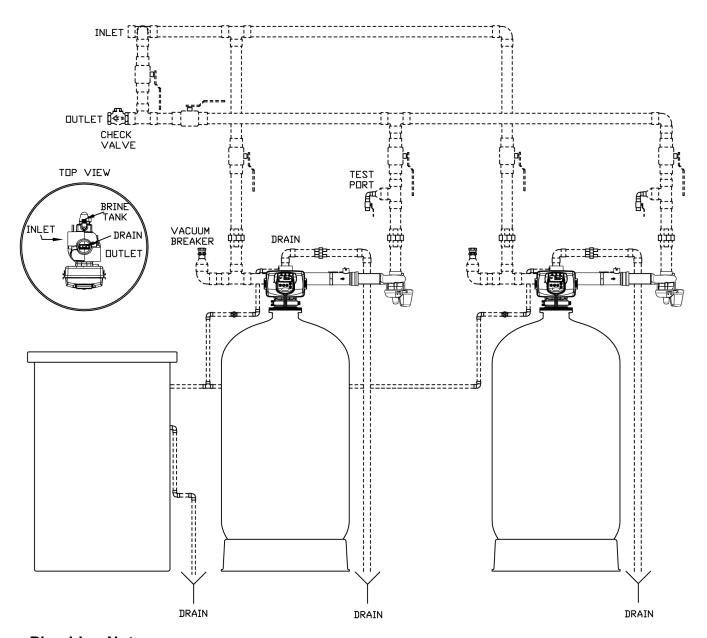
- 5. Load the gravel into the mineral tank first. After the proper amount of gravel has been placed in the tank make sure the gravel bed is level so that distributor laterals are completely covered.
- 6. Load the water softening resin into the mineral tank. After loading the resin, fill the remainder of the mineral tank with water.

Note: Care should be taken when installing the gravel and resin that internal piping and tank lining is not damaged.

#### **Loading the Media and Mounting the Control Valve**

#### **Mounting the Control Valves**

- 1. Mount the flange adapter to the tank using the stainless steel, nut and bolt pack that was packaged with the flange adapter. It is recommended that an anti-seize lubricant be used on the threads of each bolt.
- 2. Push the flow disperser inside the flange adapter until it clips into the groove.
- 3. Grease the flange O-ring and the distributor pilot O-ring before mounting the control valve.


#### Caution: DO NOT USE PETROLEUM BASED GREASES!

- 4. Guide the distributor pipe into the distributor pilot.
- 5. Special precaution is advised to avoid pinching or damaging the flange O-ring.
- 6. Lower and adjust the control valve until it rests square and flush with the flange adapter.
- 7. Open the hinged clamp and fit over the flange adapter and control valve.
- 8. Close clamp and loosely attach the bolted clasp. This allows for proper alignment of the control valve for installation.
- 9. Once control valve is properly aligned, tighten bolted clasp.

Repeat above steps to mount the control valve on each tank.

The system is now ready to install.

#### **Plumbing Diagram**



#### **Plumbing Notes:**

All plumbing should be done according to local plumbing codes. Dashed piping, fittings and valves supplied by others.

- 1. Unions must be installed to facilitate removal of the control valve for servicing.
- 2. This system uses tanks that must not be subjected to a vacuum. A vacuum breaker must be installed in an upright position per drawing.
- 3. Water meter must be installed in the horizontal position as shown in the drawing. Note directional arrow on meter casting.

#### **General Installation**

#### **Plumbing Connections**

Note: All plumbing should be done in accordance with local plumbing codes.

#### **Inlet and Outlet Connections:**

Connect piping to unit using the Plumbing Diagram as a guide. Unions need to be installed in the inlet, outlet and drain piping to facilitate removal of the control valve for servicing.

Connect the incoming untreated water line to the inlet connection on the left side of the control valve and the outgoing treated water line to the outlet connection on the right side of the control valve. Inlet and outlet connections are marked with directional arrows.

#### **Drain Connections**

Do not solder joints near the Drain Line Flow Controller (DLFC). The DLFC has rubber components that could be damaged by heat. Soldering should be done prior to connecting to the DLFC fitting.

Connect drain line to the DLFC located on the top of the control valve, making sure the drain lines are properly supported and secured to prevent excessive vibration or strain. Make the drain line as short as possible, leaving an air gap to visibly monitor the water flow to the drain.

Option: Drain line may be run using Sch.80 PVC

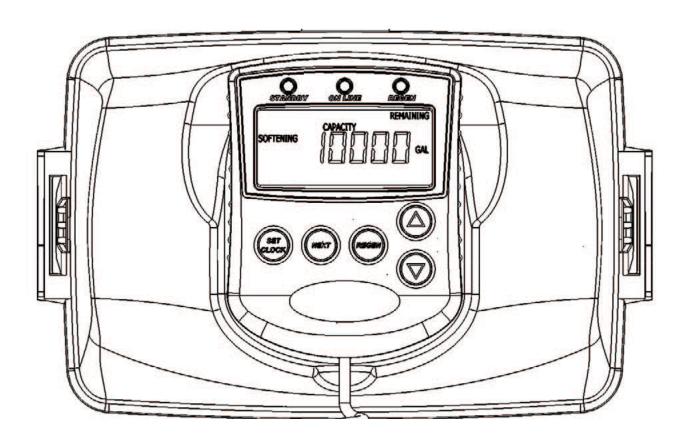
#### **Brine Tank**

Make sure that the floor beneath the salt tank is both level and clean. Connect the brine tubing from the brine tank to the control valve using the tubing and fittings, (packaged inside the brine tank.) Brine connection on the softener is located on the top rear of the control valve.

To prevent water damage in case of brine tank overflow, locate the overflow fitting on the outside of the brine tank directly below the fittings for the tubing. Attach tubing to the overflow fitting and position it so that the excess water flows to the drain.

If seismic straps are included secure to floor and brine tank.

Note: On very large systems the tubing and fittings are not included. The system requires hard piping to the brine tank such as Sch.80 PVC.


#### **Pressure Testing**

Verify water pressure is within operating range.

The unit should be pressure tested prior to the initial operation.

- To begin pressure test, slowly open the inlet water valve to the unit.
- Allow pressure build up to line pressure and observe for leaks.
- Correct as necessary.

## Series 959 Control Valve Programming



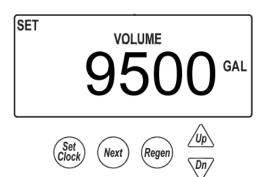
#### **Control Valve Programming**

#### **Set the Clock**

Press the **SET CLOCK** button. The hour digit will begin flashing. Use the **UP** and **DOWN** buttons to adjust the hour setting.



Press the **SET CLOCK** button again. The minutes will begin flashing. Use the **UP** and **DOWN** buttons to adjust the minutes setting.

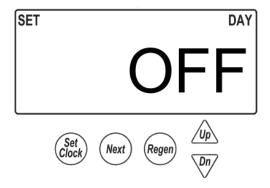



After the minutes and hour settings have been adjusted press SET CLOCK to complete setting the clock.

#### **Set Gallons Between Regenerations**

Before you can set the gallons between regenerations you will need to know the water softener capacity and the water hardness. For your convenience a gallon calculator has been provided on pages 20-22.

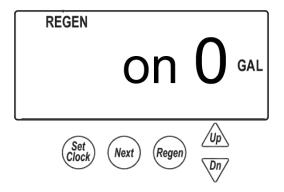
Note: To calculate the gallons between regenerations use the following formula. *Capacity multiplied by 0.8 divided by Hardness* 




To set gallons between regenerations press and hold **NEXT** and **UP** buttons simultaneously for approximately five seconds. The numbers will begin flashing. To adjust the gallons use the **UP** or **DOWN** buttons. Press **NEXT** to complete setting the gallons between regenerations and to advance to the **DAY OVERRIDE**.

#### **Control Valve Programming**

#### **Day Override**


This setting should be set to OFF. Twin systems do not require a day override.



Press **NEXT** to advance to the Time of Regeneration

#### **Time of Regeneration**

The System regenerates when the volume remaining reaches 0. This setting is not adjustable.



Press **NEXT** to exit programming.

#### **User Information Displays**

During normal operation one of three screens can be displayed. Pressing the **NEXT** button alternates between these displays.

- 1. Current Time of Day
- 2. Current Flow Rate in Gallons per Minute
- 3. Totalizer (Total gallons used since installed)
- 4. Capacity Remaining in Gallons

Adjustments **cannot** be made from the user information displays.

See Examples Below



115 PM



#### **Current Flow Rate**

48.5 GAL MIN



#### **Totalizer**

 $28370^{\text{GAL}}$ 



#### **Capacity Remaining in Gallons**

REMAININGVOLUME TODAY



#### **Volume Calculator**

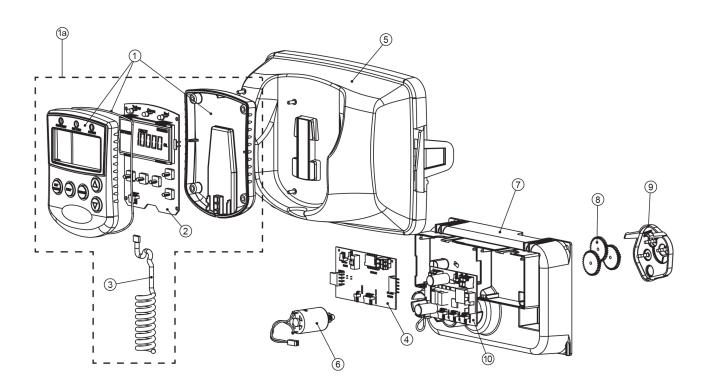
| MODEL<br>NUMBER | WATER HARDNESS 10-14 |        |        |        |        |  |
|-----------------|----------------------|--------|--------|--------|--------|--|
|                 | 10                   | 11     | 12     | 13     | 14     |  |
| A959SM-300      | 24,000               | 21,500 | 20,000 | 18,000 | 17,000 |  |
| A959SM-450      | 36,000               | 32,500 | 30,000 | 27,500 | 25,500 |  |
| A959SM-600      | 48,000               | 43,500 | 40,000 | 36,500 | 34,000 |  |
| A959SM-750      | 60,000               | 54,500 | 50,000 | 46,000 | 42,500 |  |
| A959SM-900      | 72,000               | 65,000 | 60,000 | 55,000 | 51,000 |  |
| A959SM-<br>1050 | 84,000               | 76,000 | 70,000 | 64,500 | 60,000 |  |
| A959SM-<br>1200 | 96,000               | 87,000 | 80,000 | 73,500 | 68,500 |  |

| MODEL           | WATER HARDNESS 15-19 |        |        |        |        |  |
|-----------------|----------------------|--------|--------|--------|--------|--|
| NUMBER          | 15                   | 16     | 17     | 18     | 19     |  |
| A959SM-300      | 16,000               | 21,500 | 20,000 | 18,000 | 17,000 |  |
| A959SM-450      | 36,000               | 32,500 | 30,000 | 27,500 | 25,500 |  |
| A959SM-600      | 48,000               | 43,500 | 40,000 | 36,500 | 34,000 |  |
| A959SM-750      | 60,000               | 54,500 | 50,000 | 46,000 | 42,500 |  |
| A959SM-900      | 72,000               | 65,000 | 60,000 | 55,000 | 51,000 |  |
| A959SM-<br>1050 | 84,000               | 76,000 | 70,000 | 64,500 | 60,000 |  |
| A959SM-<br>1200 | 96,000               | 87,000 | 80,000 | 73,500 | 68,500 |  |

#### **Volume Calculator**

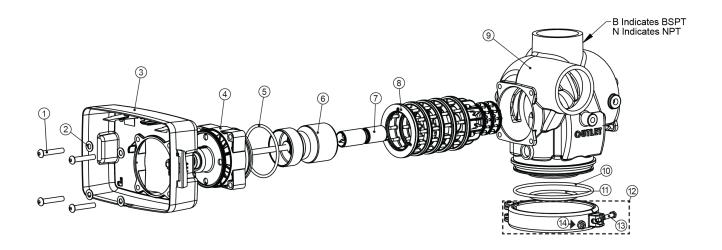
| MODEL<br>NUMBER | WATER HARDNESS 20-24 |        |        |        |        |
|-----------------|----------------------|--------|--------|--------|--------|
|                 | 20                   | 21     | 22     | 23     | 24     |
| A959SM-300      | 12,000               | 11,000 | 10,500 | 10,000 | 9,500  |
| A959SM-450      | 18,000               | 17,000 | 16,000 | 15,500 | 15,000 |
| A959SM-600      | 24,000               | 22,500 | 21,500 | 20,500 | 20,000 |
| A959SM-750      | 30,000               | 28,500 | 27,000 | 26,000 | 25,000 |
| A959SM-900      | 36,000               | 34,000 | 32,500 | 31,000 | 30,000 |
| A959SM-<br>1050 | 42,000               | 40,000 | 38,000 | 36,500 | 35,000 |
| A959SM-<br>1200 | 48,000               | 45,500 | 43,500 | 41,500 | 40,000 |

| MODEL           | WATER HARDNESS 25-29 |        |        |        |        |  |
|-----------------|----------------------|--------|--------|--------|--------|--|
| NUMBER          | 25                   | 26     | 27     | 28     | 29     |  |
| A959SM-300      | 9,600                | 9,200  | 8,800  | 8,500  | 8,200  |  |
| A959SM-450      | 14,000               | 13,500 | 13,000 | 12,500 | 12,000 |  |
| A959SM-600      | 19,000               | 18,000 | 17,500 | 17,000 | 16,500 |  |
| A959SM-750      | 24,000               | 23,000 | 22,000 | 21,000 | 20,500 |  |
| A959SM-900      | 28,500               | 27,500 | 26,500 | 25,500 | 24,500 |  |
| A959SM-<br>1050 | 33,500               | 32,000 | 31,000 | 30,000 | 28,500 |  |
| A959SM-<br>1200 | 38,000               | 36,500 | 35,500 | 34,000 | 33,000 |  |


#### **Volume Calculator**

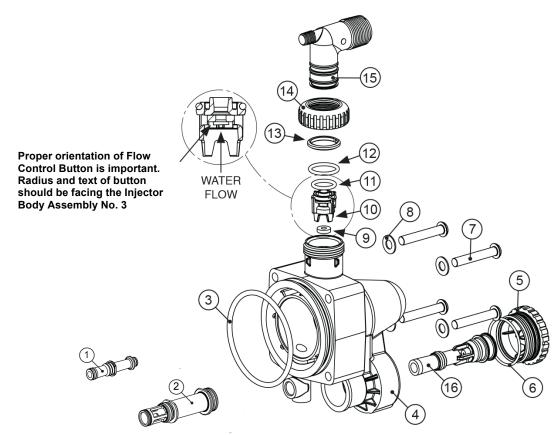
| MODEL<br>NUMBER | WATER HARDNESS 30-34 |        |        |        |        |
|-----------------|----------------------|--------|--------|--------|--------|
|                 | 30                   | 31     | 32     | 33     | 34     |
| A959SM-300      | 8,000                | 7,700  | 7,500  | 7,200  | 7,000  |
| A959SM-450      | 12,000               | 11,500 | 11,000 | 10,500 | 10,000 |
| A959SM-600      | 16,000               | 15,000 | 14,500 | 14,000 | 13,500 |
| A959SM-750      | 20,000               | 19,000 | 18,500 | 18,000 | 17,500 |
| A959SM-900      | 24,000               | 23,000 | 22,500 | 21,500 | 21,000 |
| A959SM-<br>1050 | 28,000               | 27,000 | 26,000 | 25,000 | 24,500 |
| A959SM-<br>1200 | 32,000               | 30,500 | 30,000 | 29,000 | 28,000 |

| MODEL           | WATER HARDNESS 34-39 |        |        |        |        |  |
|-----------------|----------------------|--------|--------|--------|--------|--|
| NUMBER          | 35                   | 36     | 37     | 38     | 39     |  |
| A959SM-300      | 6,800                | 6,600  | 6,400  | 6,200  | 6,000  |  |
| A959SM-450      | 10,000               | 9,800  | 9,600  | 9,400  | 9,200  |  |
| A959SM-600      | 13,500               | 13,000 | 12,500 | 12,000 | 11,500 |  |
| A959SM-750      | 17,000               | 16,500 | 16,000 | 15,500 | 15,000 |  |
| A959SM-900      | 20,500               | 20,000 | 19,000 | 18,500 | 18,000 |  |
| A959SM-<br>1050 | 24,000               | 23,000 | 22,500 | 22,000 | 21,500 |  |
| A959SM-<br>1200 | 27,000               | 26,500 | 25,500 | 25,000 | 24,500 |  |


#### **Front Cover and Drive Assembly**

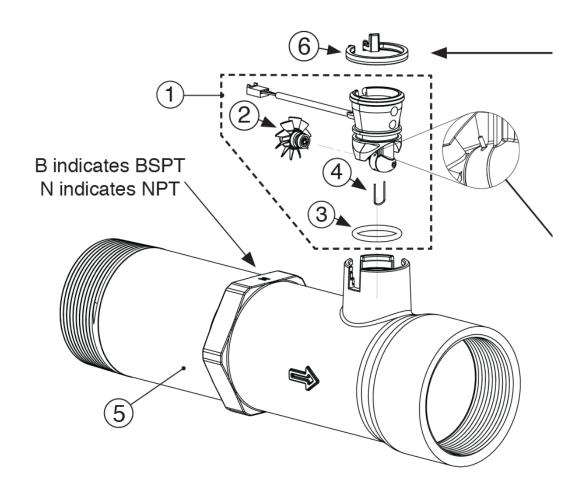
| Drawing<br>No. | Part No.      | Description                                        | Quantity |
|----------------|---------------|----------------------------------------------------|----------|
| 1              | V3068         | Pod Front and Back Covers                          | 1        |
| 1a             | V3082         | Pod Assembly Complete with Circuit Board           | 1        |
| 2              | V3241-01BOARD | Pod Circuit Board                                  | 1        |
| 3              | V3248         | Pod Cable                                          | 1        |
| 4              | V3242-01BOARD | Valve Circuit Board                                | 1        |
| 5              | V3224-01R     | Front Cover                                        | 1        |
| 6              | V3107-01      | Drive Motor Assembly                               | 1        |
| 7              | V3226-01      | Drive Bracket Assembly                             | 1        |
| 8              | V3110         | Drive Gear 12x36                                   | 3        |
| 9              | V3109         | Drive Gear Cover                                   | 1        |
| 10             | N/A           | This part does not apply to the single tank system | N/A      |
| Not Shown      | V3461         | Power Cord (24 VAC Adapter)                        | 1        |

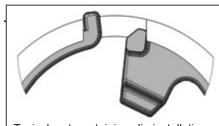



#### **Main Body Internal Parts**

| Drawing<br>No. | Part No. | Description                       | Quantity |
|----------------|----------|-----------------------------------|----------|
| 1              | V3274    | Drive Bracket Screw (SS 3/8-16x2) | 4        |
| 2              | V3291    | Drive Bracket Washer (SS 3/8)     | 4        |
| 3              | V3225    | Back Plate                        | 1        |
| 4              | V3093    | Drive Cap Assembly                | 1        |
| 5              | V3289    | Drive Cap O-Ring                  | 1        |
| 6              | V3666-01 | Main Piston                       | 1        |
| 7              | V3238-01 | Brine Piston                      | 1        |
| 8              | V3092    | Seal and Spacer Stack Assembly    | 1        |
| 9              | V3667-03 | Valve Body                        | 1        |
| 10             | V3763    | Valve Body O-Ring                 | 1        |
| 11             | V3762    | Distributor O-Ring                | 1        |
| 12             | V3091    | Base Clamp Assembly               | 1        |
| 13             | V3276    | Clamp Bolt (SS 5/16-18x1.75)      | 1        |
| 14             | V3269    | Clamp Nut (SS 5/16-18)            | 1        |




#### **Injector Housing Assembly**

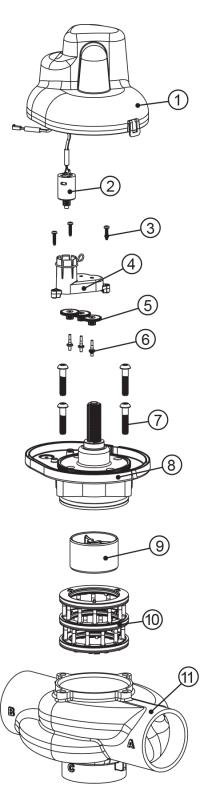

| Drawing<br>No. | Part No. | Description                               | Quantity |
|----------------|----------|-------------------------------------------|----------|
| 1              | V3237-01 | Soft Fill Tube Assembly                   | 1        |
| 2              | V3670-01 | Injector Tube Down-flow Assembly          | 1        |
| 3              | V3289    | Injector Body O-Ring                      | 1        |
| 4              | V3067    | Injector Body                             | 1        |
| 5              | V3477    | Injector Cap                              | 1        |
| 6              | V3152    | Injector Cap O-Ring                       | 1        |
| 7              | V3275    | Injector Body Screw (SS 3/8-16x2.25)      | 4        |
| 8              | V3291    | Injector Body Washer Flat SS 3/8)         | 4        |
| 9              | V3162-01 | Brine Line Flow Control 1.0 GPM           | 1        |
| 10             | V3231    | Brine Refill Flow Control Retainer        | 1        |
| 11             | V3277    | Brine Refill Flow Control Retainer O-Ring | 1        |
| 12             | V3105    | Brine Elbow O-Ring                        | 1        |
| 13             | V3150    | Brine Elbow Split Ring                    | 1        |
| 14             | V3151    | Brine Elbow Nut Quick Connect             | 1        |
| 15             | V3149    | Male NPT Elbow Fitting 1"                 | 1        |
| 16             | V3010-XX | Injector Assembly (Specify Size)          | 1        |



#### **Water Meter**

| Drawing<br>No. | Part No. | Description                                              | Quantity |
|----------------|----------|----------------------------------------------------------|----------|
| 4              | V4039    | Meter Assembly 4 Foot Cable (Includes parts 2,3, and 4)  | 4        |
| '              | V3221    | Meter Assembly 15 Foot Cable (Includes parts 2,3, and 4) | <b>"</b> |
| 5              | V3844-01 | 3" Meter Body (Male X Female)                            | 1        |
| 6              | V3632    | Meter Retaining Clip                                     | 1        |
| Not Shown      | V3602    | Flow Straightener (Located inside meter housing)         | 1        |






Typical meter retaining clip installation. Ensure clip is fully engaged in groove and tabs positioned in slot as shown.

Bend clip after install

#### **Motorized Alternating Valve (MAV)**

| Drawing<br>No. | Part No. | Description                    | Quantity |
|----------------|----------|--------------------------------|----------|
| 1              | V3606    | MAV Cover Assembly             | 1        |
| 2              | V3476    | Motor Assembly 8ft. Cord       | 1        |
| 3              | V3592    | Reducing Gear Cover Screw      | 3        |
| 4              | V3262-01 | Reducing Gear Cover            | 1        |
| 5              | V3110    | Reducing Gear 12x36            | 3        |
| 6              | V3264    | Reduction Gear Axle            | 3        |
| 7              | V3789    | Drive Cap Screw                | 4        |
| 8              | V3085    | Drive Cap Assembly             | 1        |
| 9              | V3695-01 | Piston                         | 1        |
| 10             | V3084    | Seal and Spacer Stack Assembly | 1        |
| 11             | V3693-01 | Main Body                      | 1        |



#### **Brine Tank Assembly**

| Drawing<br>No. | Part No.                  | Description                      | Quantity |
|----------------|---------------------------|----------------------------------|----------|
| 1              | See System Specifications | Deck Assembly (Specify Height)   | 1        |
| 2              | See System Specifications | Brine Tank (Specify Size)        | 1        |
| 3              | HBWC-XX                   | 6" Brine Well (Specify Length)   | 1        |
| 4              | HBVA-454HF                | 454 Brine Valve Assembly Hi-Flow | 1        |
| 5              | HC-6                      | 6" Brine Well Cap                | 1        |
| 6              | HOF-C                     | Commercial Overflow Assembly     | 1        |



#### System Specifications

#### **Mineral Tank Specifications**

| Grain<br>Capacity | Mineral<br>Tank | Gravel<br>lbs. | Resin<br>Cu/Ft | Distributor<br>Assembly |
|-------------------|-----------------|----------------|----------------|-------------------------|
| 300,000           | 24 x 72         | 150            | 10             | DHLBA-24-3              |
| 450,000           | 30 x 72         | 250            | 15             | DHLBA-30-3              |
| 600,000           | 36 x 72         | 450            | 20             | DHLBA-36-3              |
| 750,000           | 42 x 72         | 700            | 25             | DHLBA-42-3              |
| 900,000           | 42 x 72         | 700            | 30             | DHLBA-42-3              |
| 1,050,000         | 48 x 72         | 1000           | 35             | DHLBA-48-3              |
| 1,200,000         | 48 x 72         | 1000           | 40             | DHLBA-48-3              |

#### **Brine Tank Specifications**

| Grain<br>Capacity | Brine<br>Tank | Deck<br>Height (in.) | Brine Float<br>Valve | Brine<br>Well |
|-------------------|---------------|----------------------|----------------------|---------------|
| 300,000           | 30 x 50       | 13                   | HBVA-454HF           | HBWC-45       |
| 450,000           | 39 x 48       | 15                   | HBVA-454HF           | HBWC-45       |
| 600,000           | 39 x 60       | 19                   | HBVA-454HF           | HBWC-55       |
| 750,000           | 39 x 60       | 23                   | HBVA-454HF           | HBWC-55       |
| 900,000           | 42 x 60       | 23                   | HBVA-454HF           | HBWC-55       |
| 1,050,000         | 42 x 60       | 20                   | HBVA-454HF           | HBWC-55       |
| 1,200,000         | 50 x 60       | 23                   | HBVA-454HF           | HBWC-55       |

#### **Control Valve Specifications**

| Grain<br>Capacity | Injector<br>Size | Drain Line<br>Flow Control<br>GPM | Brine Line<br>Flow Control<br>GPM | Brine Refill<br>Time<br>Min. |
|-------------------|------------------|-----------------------------------|-----------------------------------|------------------------------|
| 300,000           | С                | 12                                | 3.2                               | 11 min                       |
| 450,000           | D                | 20                                | 3.2                               | 16 min                       |
| 600,000           | E                | 30                                | 3.2                               | 21 min                       |
| 750,000           | F                | 35                                | 3.2                               | 26 min                       |
| 900,000           | F                | 35                                | 3.2                               | 32 min                       |
| 1,050,000         | G                | 45                                | 3.2                               | 37 min                       |
| 1,200,000         | G                | 45                                | 3.2                               | 42 min                       |

# Troubleshooting the Control Valve

| Problem                                                                              | Possible Cause                                                                                                  | Solution                                                                                                                                                                                                                   |
|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                      | No power at electrical outlet                                                                                   | Repair outlet or use working outlet                                                                                                                                                                                        |
|                                                                                      | Control valve power adapter not plugged into outlet or power cord end not connected to Circuit Board connection | Make sure Control Valve Power Cord is connected securely at both ends                                                                                                                                                      |
|                                                                                      | Improper power supply                                                                                           | Verify proper voltage is being delivered to Circuit Board                                                                                                                                                                  |
| No display on Control Valve<br>POD                                                   | Poor connection between POD connector and Circuit Board                                                         | Check connector on POD, possible broken wire or terminal pin not inserted properly in connector. Clean pins on Circuit Board by plugging and unplugging the POD connector a few times to remove excess protective coating. |
|                                                                                      | Defective power adapter                                                                                         | Replace power adapter                                                                                                                                                                                                      |
|                                                                                      | Defective Circuit Board                                                                                         | Replace Circuit Board                                                                                                                                                                                                      |
|                                                                                      | Control Valve Power Cord plugged into electric outlet controlled by light switch                                | Use uninterrupted outlet                                                                                                                                                                                                   |
| POD Circuit Board does not display correct time of day                               | Tripped Breaker Switch and/or tripped GFI                                                                       | Reset Breaker Switch and/ or GFI switch                                                                                                                                                                                    |
| display correct time of day                                                          | Power outage                                                                                                    | Reset time of day.                                                                                                                                                                                                         |
|                                                                                      | Defective Circuit Board                                                                                         | Replace Circuit Board                                                                                                                                                                                                      |
|                                                                                      | Bypass valve in bypass position                                                                                 | Turn Bypass Handles to place Bypass in service position                                                                                                                                                                    |
| Display does not indicate that water is flowing. The word "Softening" flashes on the | Meter is not connected to meter connection on Circuit Board or is not connected securely                        | Connect Meter to three-pin connection labeled FLOW on Circuit Board. Remove and reconnect to ensure proper connection                                                                                                      |
| display when water is being used                                                     | Restricted/ stalled Meter Turbine                                                                               | Remove Meter and check for rotation or foreign material                                                                                                                                                                    |
|                                                                                      | Defective Meter                                                                                                 | Replace Meter                                                                                                                                                                                                              |
|                                                                                      | Defective Circuit Board                                                                                         | Replace Circuit Board                                                                                                                                                                                                      |
| Time of day flashes on and off                                                       | Power outage                                                                                                    | Reset time of day. If Circuit Board has battery back up present, the Battery may be depleted. Replace if necessary.                                                                                                        |
| Control valve does not regenerate automatically when                                 | Broken Drive Gear or Drive Cap Assembly                                                                         | Replace Drive Gear or Drive Cap<br>Assembly                                                                                                                                                                                |
| the REGEN button is                                                                  | Broken Piston Rod                                                                                               | Replace Piston Rod                                                                                                                                                                                                         |
| depressed and held.                                                                  | Defective Circuit Board                                                                                         | Defective Circuit Board                                                                                                                                                                                                    |
|                                                                                      | Bypass Valve in bypass position                                                                                 | Turn Bypass Handles to place Bypass in service position                                                                                                                                                                    |
| Control valve does not regenerate automatically but                                  | Meter is not connected to meter connection on Circuit Board or is not connected securely                        | Connect Meter to three-pin connection labeled FLOW on Circuit Board. Remove and reconnect to ensure proper connection                                                                                                      |
| <b>does</b> when the REGEN button is depressed and held.                             | Restricted/ stalled Meter Turbine                                                                               | Remove Meter and check for rotation or foreign material                                                                                                                                                                    |
|                                                                                      | Incorrect programming                                                                                           | Check for programming error                                                                                                                                                                                                |
|                                                                                      | meen eet programming                                                                                            |                                                                                                                                                                                                                            |
|                                                                                      | Defective Meter                                                                                                 | Replace Meter                                                                                                                                                                                                              |

| Problem                        | Possible Cause                                                                     | Solution                                                                                                             |
|--------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
|                                | Bypass Valve is open or faulty                                                     | Fully close Bypass Valve or replace. Also check for multiple bypasses                                                |
|                                | Media is exhausted due to high water usage                                         | Check program settings or diagnostics for abnormal water usage                                                       |
|                                | Meter not registering                                                              | Remove Meter and check for rotation or foreign material                                                              |
|                                | Water quality fluctuation                                                          | Test water and adjust program values accordingly                                                                     |
| Hard or untreated water is     | No Salt or low level of Salt in Brine Tank                                         | Add proper type of salt to Brine Tank                                                                                |
| being delivered                | Control Valve fails to draw in brine                                               | Refer to Troubleshooting Problem: Control Valve fails to draw brine                                                  |
|                                | Insufficient brine level in Brine Tank                                             | Check refill setting in programming. Check<br>Refill Flow Control for restrictions or debris<br>and clean or replace |
|                                | Damaged Seal and Spacer Stack<br>Assembly                                          | Replace Seal and Spacer Stack Assembly                                                                               |
|                                | Control valve body type and piston type mix matched                                | Verify proper control valve body type and piston type match                                                          |
|                                | Fouled media bed                                                                   | Replace media bed                                                                                                    |
|                                | Improper setting for brine refill                                                  | Check brine refill setting                                                                                           |
|                                | Improper program settings                                                          | Check program setting to make sure they are specific to the water quality and application needs                      |
| System uses too much salt      | Control valve regenerates frequently                                               | Check for leaking fixtures that may be exhausting capacity or system is undersized                                   |
|                                | Slow drip from brine refill tubing. Float Valve is not designed to shut off a drip | Replace Seal and Spacer Stack Assembly                                                                               |
|                                | Low water pressure                                                                 | Check incoming water pressure. Water pressure must remain at minimum of 40 psi                                       |
|                                | Plugged or incorrect injector size                                                 | Replace Injector with correct size for the application. Refer to System Specification for the correct size           |
| Residual salt in service lines | Restricted drain line                                                              | Check drain line for restrictions or debris and clean                                                                |
|                                | Damaged Seal and Spacer Stack<br>Assembly                                          | Check Seal and Spacer stack assembly and piston. Replace as necessary                                                |
|                                | Draw Time too short                                                                | Program proper draw time                                                                                             |
|                                | Excess Water in Salt Tank                                                          | Program proper brine refill time                                                                                     |
|                                | Vacuum Leak in Brine Connections or Brine Line                                     | Locate vacuum leak and fix                                                                                           |
|                                | Improper program settings                                                          | Check refill setting                                                                                                 |
|                                | Plugged Injector                                                                   | Remove Injector and clean or replace                                                                                 |
|                                | Damaged Seal and Spacer Stack<br>Assembly                                          | Replace Seal and Spacer Stack Assembly                                                                               |
| Excessive water in Brine Tank  | Restricted or kinked drain line                                                    | Check drain line for restrictions or debris and or un-kink drain line                                                |
|                                | Plugged backwash flow controller                                                   | Remove backwash flow controller and clean or replace                                                                 |
|                                | Missing Refill Flow Controller                                                     | Replace Refill Flow Controller                                                                                       |

| Problem                                                                                                            | Possible Cause                                                               | Solution                                                                                                                                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                    | Injector is plugged                                                          | Remove Injector and clean or replace                                                                                                                                                                                                                                                           |
|                                                                                                                    | Faulty Brine Piston                                                          | Replace Brine Piston                                                                                                                                                                                                                                                                           |
|                                                                                                                    | Brine line tubing connection leak                                            | Inspect Tubing and Fittings for air leak                                                                                                                                                                                                                                                       |
| Control Valve fails to draw                                                                                        | Drain line restriction or debris can cause excess back pressure on Injector  | Inspect drain line and clean to correct restriction                                                                                                                                                                                                                                            |
| brine                                                                                                              | Drain line too long or elevated too high                                     | Shorten length and or height                                                                                                                                                                                                                                                                   |
|                                                                                                                    | Low water pressure                                                           | Check incoming water pressure. Water pressure must remain at minimum of 40 psi                                                                                                                                                                                                                 |
|                                                                                                                    | Damaged Seal and Spacer Stack Assy.                                          | Replace Seal and Spacer Stack Assy.                                                                                                                                                                                                                                                            |
|                                                                                                                    | Power outage during regeneration or unit is currently in regeneration        | Upon power being restored Control Valve will finish the remaining regeneration time. Reset time of day.                                                                                                                                                                                        |
| Water running to drain                                                                                             | Damaged Seal and Spacer Stack<br>Assembly                                    | Replace Seal and Spacer Stack Assembly                                                                                                                                                                                                                                                         |
|                                                                                                                    | Piston assembly failure                                                      | Replace Piston Assembly                                                                                                                                                                                                                                                                        |
|                                                                                                                    | Drive Cap Assembly not tightened in properly                                 | Re-tighten the Drive Cap Assembly                                                                                                                                                                                                                                                              |
| Err - 1001 = Control unable to sense motor movement                                                                | Motor not inserted full to engage pinion, motor wires broken or disconnected | Disconnect power, make sure motor is fully engaged, check for broken wires, make sure two pin connector on motor is connected to the two pin connection on the Circuit Board labeled MOTOR. Press NEXT and REGEN buttons at the same time for 3 seconds to resynchronize software with piston. |
|                                                                                                                    | Circuit Board not properly snapped into drive bracket                        | Properly snap Circuit Board into drive bracket and then Press NEXT and REGEN buttons at the same time for 3 seconds to resynchronize software with piston.                                                                                                                                     |
|                                                                                                                    | Missing reduction gears                                                      | Replace missing gears                                                                                                                                                                                                                                                                          |
|                                                                                                                    | Foreign material is lodged in control valve                                  | Open up Control Valve and pull out piston assembly and Seal and Spacer Stack Assembly for inspection. Press NEXT and REGEN buttons at the same time for 3 seconds to resynchronize software with piston.                                                                                       |
| Err - 1002 = Control valve<br>motor ran too short and was<br>unable to find the next cycle<br>position and stalled | Mechanical binding                                                           | Check Piston and Seal and Spacer Stack Assembly, check Reduction Gears, check Drive Bracket and Main Drive Gear Interface. Press NEXT and REGEN buttons at the same time for 3 seconds to resynchronize software with piston.                                                                  |
|                                                                                                                    | Main Drive Gear too tight                                                    | Loosen Main Drive Gear. Press NEXT and REGEN buttons at the same time for 3 seconds to resynchronize software with piston.                                                                                                                                                                     |
|                                                                                                                    | Improper voltage being delivered to Circuit Board                            | Verify that proper voltage is being supplied. Press NEXT and REGEN buttons at the same time for 3 seconds to resynchronize software with piston.                                                                                                                                               |

| Problem                                                                       | Possible Cause                                                                                                                                                   | Solution                                                                                                                                                                                |
|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                               | Motor failure during a regeneration                                                                                                                              | Check motor connections then Press<br>NEXT and REGEN buttons at the same<br>time for 3 seconds to resynchronize<br>software with piston.                                                |
| Err - 1003 = Control valve motor ran too long and was                         | Foreign matter built up on Piston and Seal and Spacer Stack Assemblies creating                                                                                  | Replace Piston and Seal and Spacer Stack Assemblies.                                                                                                                                    |
| unable to find the next cycle position                                        | friction and drag enough to time out Motor                                                                                                                       | Press NEXT and REGEN buttons at the same time for 3 seconds to resynchronize software with piston.                                                                                      |
|                                                                               | Drive Bracket not snapped in properly and out enough that reduction gears and drive gear do not interface                                                        | Snap Drive Bracket in properly then Press NEXT and REGEN buttons at the same time for 3 seconds to resynchronize software with piston.                                                  |
| Err- 14001= Message Queue<br>Full                                             | Master Circuit Board did not receive a response from the slave units                                                                                             | Press NEXT and REGEN buttons at the same time for 3 seconds to resynchronize software with piston.                                                                                      |
|                                                                               | Control Valve programmed for ALT A or NHWBP without having a motorized drive securely connected to the two pin terminal labeled BYPASS on the main Circuit Board | Press NEXT and REGEN buttons at the same time for 3 seconds to resynchronize software with piston position. Then reprogram valve to proper setting.                                     |
|                                                                               | Poor wire connection                                                                                                                                             | Remove power and check connection for MAV or NHWBP motor to Circuit Board two pin connection labeled BYPASS.                                                                            |
| Err- 15003= MAV or NHWBP ran too long and unable to find the proper position  |                                                                                                                                                                  | Make sure wires in connector are inserted securely and no wires are broken. Clean pins on Circuit Board by plugging and unplugging the connector a few times to removed excess coating. |
| the proper position                                                           |                                                                                                                                                                  | Press NEXT and REGEN buttons at the same time for 3 seconds to resynchronize software with piston.                                                                                      |
|                                                                               | Excess drag causing timeout before stall                                                                                                                         | Open MAV or NHWBP to check for obstructions.                                                                                                                                            |
|                                                                               | MAV or NHWBP motor not fully engaged                                                                                                                             | Properly insert motor into casing, do not force into casing.                                                                                                                            |
|                                                                               | with reduction gears                                                                                                                                             | Press NEXT and REGEN buttons at the same time for 3 seconds to resynchronize software with piston.                                                                                      |
|                                                                               | Frankrich and the MAY on                                                                                                                                         | Open MAV or NHWBP and check for foreign material.                                                                                                                                       |
| Err- 15010 or 15011= MAV or                                                   | Foreign material is lodged in MAV or NHWBP Valve                                                                                                                 | Press NEXT and REGEN buttons at the same time for 3 seconds to resynchronize software with piston.                                                                                      |
| NHWBP Valve Motor ran too<br>short (stalled) while trying to<br>drive offline | Mechanical Binding                                                                                                                                               | Check drive assembly piston, seal and spacer stack assembly, reduction gears, drive gear interface, and black drive pinion on drive motor.                                              |
|                                                                               |                                                                                                                                                                  | Press NEXT and REGEN buttons at the same time for 3 seconds to resynchronize software with piston.                                                                                      |

| Problem                                                                                                                                                                                                         | Possible Cause                                                                                                               | Solution                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Number of Units Error                                                                                                                                                                                           | System is programmed for the wrong number of units or a slave unit is the "error number of units" mode due to loss of power. | Correct all errors on slave units before attempting to reset error on master.  Pressing any button while in the "number of units error" will enter the user into the settings screen. Adjust to the correct units for the system and press NEXT to exit the setup screen.  Press NEXT and REGEN buttons at the same time for 3 seconds to resynchronize software with piston. Reprogram valve to proper setting. |
| Communications have been broken with the unit specified in the error message.  16001= Error with Unit 2  16002= Error with Unit 3  16003= Error with Unit 4  16004= Error with Unit 5  16005= Error with Unit 6 | Poor connection on the circuit boards.                                                                                       | Make sure wires in connector are inserted securely and now wires are broken.  Clean pins on circuit board by plugging and unplugging the connector a few times  Press NEXT and REGEN buttons at the same time for 3 seconds to resynchronize software with piston.                                                                                                                                               |
|                                                                                                                                                                                                                 | More than one unit has determined that it is the master control.                                                             | Press NEXT and REGEN buttons at the same time for 3 seconds to resynchronize software with piston.  Reprogram each valve to operate as a single unit.  Reprogram the control that is to be the master control and it will filter down the programming to the slave controls automatically.                                                                                                                       |

#### Water Softener Log Sheet

It is important to keep a log of the water softener programming and other important information. This is necessary for repairs and other troubleshooting needs.

| Date | Time | Hardness   | Volume<br>Remaining | Salt Usage | Pressure |
|------|------|------------|---------------------|------------|----------|
| Date | Time | Tididiicoo | Remaining           | Can Coage  | 11000010 |
|      |      |            |                     |            |          |
|      |      |            |                     |            |          |
|      |      |            |                     |            |          |
|      |      |            |                     |            |          |
|      |      |            |                     |            |          |
|      |      |            |                     |            |          |
|      |      |            |                     |            |          |
|      |      |            |                     |            |          |
|      |      |            |                     |            |          |
|      |      |            |                     |            |          |
|      |      |            |                     |            |          |
|      |      |            |                     |            |          |
|      |      |            |                     |            |          |
|      |      |            |                     |            |          |
|      |      |            |                     |            |          |
|      |      |            |                     |            |          |
|      |      |            |                     |            |          |
|      |      |            |                     |            |          |
|      |      |            |                     |            |          |
|      |      |            |                     |            |          |
|      |      |            |                     |            |          |
|      |      |            |                     |            |          |
|      |      |            |                     |            |          |
|      |      |            |                     |            |          |
|      |      |            |                     |            |          |

#### Water Softener Log Sheet

It is important to keep a log of the water softener programming and other important information. This is necessary for repairs and other troubleshooting needs.

| Date | Time | Hardness   | Volume<br>Remaining | Salt Usage | Pressure |
|------|------|------------|---------------------|------------|----------|
| Date | Time | Tididiicoo | Remaining           | Can Coage  | 11000010 |
|      |      |            |                     |            |          |
|      |      |            |                     |            |          |
|      |      |            |                     |            |          |
|      |      |            |                     |            |          |
|      |      |            |                     |            |          |
|      |      |            |                     |            |          |
|      |      |            |                     |            |          |
|      |      |            |                     |            |          |
|      |      |            |                     |            |          |
|      |      |            |                     |            |          |
|      |      |            |                     |            |          |
|      |      |            |                     |            |          |
|      |      |            |                     |            |          |
|      |      |            |                     |            |          |
|      |      |            |                     |            |          |
|      |      |            |                     |            |          |
|      |      |            |                     |            |          |
|      |      |            |                     |            |          |
|      |      |            |                     |            |          |
|      |      |            |                     |            |          |
|      |      |            |                     |            |          |
|      |      |            |                     |            |          |
|      |      |            |                     |            |          |
|      |      |            |                     |            |          |
|      |      |            |                     |            |          |

#### Manufacturer's Limited Warranty

Pacific Water Inc. ("Manufacturer") warrants to the original owner that its Water Conditioning Equipment will be free from defects in material and workmanship under normal use and service for a period of five (5) years from the date of installation, when installed and operated within recommended parameters. No warranty is made with respect to defects not reported to Manufacturer within the warranty period and/or defects or damages due to neglect, misuse, alterations, accident, misapplication, physical damage, or damage caused by fire, floods, acts of God, freezing or hot water or similar causes. Manufacturer's obligation to the owner of this equipment under this Limited Warranty shall be limited, at its option, to replacement or repair of this Water Conditioning Equipment.

To obtain warranty service mail or ship the defective parts freight prepaid to the Manufacturer's place of business. Manufacturer will, at its option, repair or replace the defective components at its expense and return parts freight collect.

Manufacturer gives this warranty to the owner in lieu of all other warranties, express or implied, including without limitation any implied warranties of merchantability or fitness for a particular purpose and hereby expressly disclaims all other such warranties. Manufacturer's liability hereunder shall not exceed the cost of the product. Under no circumstances will Manufacturer be liable for any incidental or consequential damages or for any other loss, damage or expense of any kind, including loss of profits, arising in connection with the installation or use or inability to use this product.

To obtain warranty service contact:

Pacific Water Inc. 200 W. Haven Ave. Salt Lake City, Utah 84115

Phone 801-485-6510
Fax 801-467-4117
Email sales@pacificwaterinc.com